Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.660
Filter
1.
Physiol Rep ; 12(8): e16026, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38653584

ABSTRACT

High sodium intake is decisive in the incidence increase and prevalence of hypertension, which has an impact on skeletal muscle functionality. Diazoxide is an antihypertensive agent that inhibits insulin secretion and is an opener of KATP channels (adosine triphosphate sensitive potasium channels). For this reason, it is hypothesized that moderate-intensity exercise and diazoxide improve skeletal muscle function by reducing the oxidants in hypertensive rats. Male Wistar rats were assigned into eight groups: control (CTRL), diazoxide (DZX), exercise (EX), exercise + diazoxide (EX + DZX), hypertension (HTN), hypertension + diazoxide (HTN + DZX), hypertension + exercise (HTN + EX), and hypertension + exercise + diazoxide (HTN + EX + DZX). To induce hypertension, the rats received 8% NaCl dissolved in water orally for 30 days; in the following 8 weeks, 4% NaCl was supplied to maintain the pathology. The treatment with physical exercise of moderate intensity lasted 8 weeks. The administration dose of diazoxide was 35 mg/kg intraperitoneally for 14 days. Tension recording was performed on the extensor digitorum longus and the soleus muscle. Muscle homogenates were used to measure oxidants using fluorescent probe and the activity of antioxidant systems. Diazoxide and moderate-intensity exercise reduced oxidants and increased antioxidant defenses.


Subject(s)
Antioxidants , Diazoxide , Hypertension , Muscle, Skeletal , Physical Conditioning, Animal , Rats, Wistar , Animals , Diazoxide/pharmacology , Male , Muscle, Skeletal/metabolism , Muscle, Skeletal/drug effects , Hypertension/metabolism , Hypertension/physiopathology , Physical Conditioning, Animal/physiology , Rats , Antioxidants/metabolism , Antioxidants/pharmacology , Oxidative Stress/drug effects , Oxidants/metabolism
2.
Obesity (Silver Spring) ; 32(2): 252-261, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37919617

ABSTRACT

OBJECTIVE: This study assessed the effect of 1-year administration of diazoxide choline extended-release tablet (DCCR) on hyperphagia and other complications of Prader-Willi syndrome (PWS). METHODS: The authors studied 125 participants with PWS, age ≥ 4 years, who were enrolled in the DESTINY PWS Phase 3 study and who received DCCR for up to 52 weeks in DESTINY PWS and/or its open-label extension. The primary efficacy endpoint was Hyperphagia Questionnaire for Clinical Trials (HQ-CT) score. Other endpoints included behavioral assessments, body composition, hormonal measures, and safety. RESULTS: DCCR administration resulted in significant improvements in HQ-CT (mean [SE] -9.9 [0.77], p < 0.0001) and greater improvements in those with more severe baseline hyperphagia (HQ-CT > 22). Improvements were seen in aggression, anxiety, and compulsivity (all p < 0.0001). There were reductions in leptin, insulin, and insulin resistance, as well as a significant increase in adiponectin (all p < 0.004). Lean body mass was increased (p < 0.0001). Disease severity was reduced as assessed by clinician and caregiver (both p < 0.0001). Common treatment-emergent adverse events included hypertrichosis, peripheral edema, and hyperglycemia. Adverse events infrequently resulted in discontinuation (7.2%). CONCLUSIONS: DCCR administration to people with PWS was well tolerated and associated with broad-ranging improvements in the syndrome. Sustained administration of DCCR has the potential to reduce disease severity and the burden of care for families.


Subject(s)
Prader-Willi Syndrome , Humans , Child, Preschool , Prader-Willi Syndrome/drug therapy , Prader-Willi Syndrome/complications , Diazoxide/pharmacology , Diazoxide/therapeutic use , Hyperphagia/complications , Body Composition , Insulin/therapeutic use
4.
Alcohol ; 113: 33-40, 2023 12.
Article in English | MEDLINE | ID: mdl-37295565

ABSTRACT

The leukotrienes, lipid mediators, have a role in gastric damage induced by ethanol. Here, the gastroprotective effect of montelukast, an antagonist of the leukotriene receptor, and the involvement of the NO-cGMP-KATP channel pathway, were evaluated in gastric damage induced by ethanol in rats. For this, l-arginine, l-NAME, methylene blue (guanylate cyclase inhibitor), sildenafil, diazoxide, or glibenclamide (ATP-sensitive potassium channel blocker) were administered 30 min before montelukast (0.1, 1, 10, and 20 mg/kg, by mouth [p.o.]). After 1 h, to induce gastric damage, the rats received absolute ethanol (4 mL/kg, p.o.), and then microscopic, macroscopic, and pro-inflammatory parameters (TNF-α and IL-1ß) were assessed. Results obtained here revealed that montelukast significantly attenuated the macroscopic and microscopic lesions induced by ethanol. Montelukast also reduced IL-1ß and TNF-α levels. It was also observed that NOS inhibitor (l-NAME), methylene blue, and glibenclamide inhibited the effects of montelukast in the stomach. Moreover, the NO precursor (l-arginine), the PDE-5 inhibitor (sildenafil), and a potassium channel opener (diazoxide) before montelukast produced gastroprotective effects. In conclusion, the effect of montelukast against gastric lesions induced by ethanol is mediated, at least in part, through the pathway of the NO-cGMP-KATP channel.


Subject(s)
Methylene Blue , Nitric Oxide , Rats , Animals , NG-Nitroarginine Methyl Ester/pharmacology , Nitric Oxide/metabolism , Sildenafil Citrate , Methylene Blue/pharmacology , Ethanol/toxicity , Cyclic GMP/metabolism , Glyburide/pharmacology , Tumor Necrosis Factor-alpha , Diazoxide/pharmacology , KATP Channels/metabolism , Stomach , Arginine , Adenosine Triphosphate
5.
Diabetes ; 72(9): 1320-1329, 2023 09 01.
Article in English | MEDLINE | ID: mdl-37358194

ABSTRACT

Congenital hyperinsulinism (HI) is a genetic disorder in which pancreatic ß-cell insulin secretion is excessive and results in hypoglycemia that, without treatment, can cause brain damage or death. Most patients with loss-of-function mutations in ABCC8 and KCNJ11, the genes encoding the ß-cell ATP-sensitive potassium channel (KATP), are unresponsive to diazoxide, the only U.S. Food and Drug Administration-approved medical therapy and require pancreatectomy. The glucagon-like peptide 1 receptor (GLP-1R) antagonist exendin-(9-39) is an effective therapeutic agent that inhibits insulin secretion in both HI and acquired hyperinsulinism. Previously, we identified a highly potent antagonist antibody, TB-001-003, which was derived from our synthetic antibody libraries that were designed to target G protein-coupled receptors. Here, we designed a combinatorial variant antibody library to optimize the activity of TB-001-003 against GLP-1R and performed phage display on cells overexpressing GLP-1R. One antagonist, TB-222-023, is more potent than exendin-(9-39), also known as avexitide. TB-222-023 effectively decreased insulin secretion in primary isolated pancreatic islets from a mouse model of hyperinsulinism, Sur1-/- mice, and in islets from an infant with HI, and increased plasma glucose levels and decreased the insulin to glucose ratio in Sur1-/- mice. These findings demonstrate that targeting GLP-1R with an antibody antagonist is an effective and innovative strategy for treatment of hyperinsulinism. ARTICLE HIGHLIGHTS: Patients with the most common and severe form of diazoxide-unresponsive congenital hyperinsulinism (HI) require a pancreatectomy. Other second-line therapies are limited in their use because of severe side effects and short half-lives. Therefore, there is a critical need for better therapies. Studies with the glucagon-like peptide 1 receptor (GLP-1R) antagonist, avexitide (exendin-(9-39)), have demonstrated that GLP-1R antagonism is effective at lowering insulin secretion and increasing plasma glucose levels. We have optimized a GLP-1R antagonist antibody with more potent blocking of GLP-1R than avexitide. This antibody therapy is a potential novel and effective treatment for HI.


Subject(s)
Congenital Hyperinsulinism , Glucagon-Like Peptide-1 Receptor , Hyperinsulinism , Animals , Mice , Antibodies/therapeutic use , Blood Glucose , Congenital Hyperinsulinism/drug therapy , Congenital Hyperinsulinism/genetics , Diazoxide/pharmacology , Glucagon-Like Peptide 1 , Glucagon-Like Peptide-1 Receptor/antagonists & inhibitors , Hyperinsulinism/immunology , Hyperinsulinism/therapy , Mutation , Sulfonylurea Receptors/genetics
6.
Appl Biochem Biotechnol ; 195(8): 4796-4817, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37184724

ABSTRACT

Islet transplantation offers improved glycemic control in individuals with type 1 diabetes mellitus. However, in vitro islet culture is associated with islet apoptosis and eventually will lose their functionality prior to transplantation. In this study, we examined the effects of mesenchymal stem cells (MSCs) secretome preconditioned with diazoxide (DZ) and trimetazidine (TMZ) on rat islet cells during pre-transplant culture. With and without preconditioned hAD-MSCs' concentrated conditioned media (CCM) were added to the culture medium containing rat islets every 12 h for 24 and 48 h, after testing for selected cytokine concentrations (interleukin (IL)-4, IL-6, IL-13). Insulin content, glucose-stimulated insulin secretion, islet cell apoptosis, and mRNA expression of pro-apoptotic (BAX, BAK-1, and PUMA) and anti-apoptotic factors (BCL-2, BCL-xL, and XIAP) in rat islets were assessed after 24 and 48 h of culture. The protein level of IL-6 and IL-4 was significantly higher in TMZ-MSC-CM compared to MSC-non-CM. In rat isolated islets, normalized secreted insulin in the presence of 16.7 mM glucose was significantly higher in treated islet groups compared to control islets at both 24 and 48 h cultivation. Also, the percentage of apoptotic islet cells TMZ-MSC-CCM-treated islets was significantly lower compared to MSC-CM and MSC-CCM-treated islets in both 24 and 48 h cultivation. Consistent with the number of apoptotic cells, after 24 h culture, the expression of BCL-2 and BCL-xL genes in the control islets was lower than all treatment islet groups and in 48 h was lower than only TMZ-MSC-CM-treated islets. Also, the expression of the XIAP gene in control islets was significantly lower compared to the TMZ-MSC-CCM-treated islets at both at 24 and 48 h. In addition, mRNA level of the BAX gene in TMZ-MSC-CCM-treated islets was significantly lower compared to other groups at 48 h. Our findings revealed that TMZ proved to be more effective than DZ and could enhance the potential of hAD-MSCs-CM to improve the function and viability of islets prior to transplantation.


Subject(s)
Islets of Langerhans , Mesenchymal Stem Cells , Trimetazidine , Rats , Animals , Trimetazidine/pharmacology , Trimetazidine/metabolism , Interleukin-6/metabolism , Secretome , bcl-2-Associated X Protein/metabolism , Islets of Langerhans/metabolism , Insulin/metabolism , Diazoxide/metabolism , Diazoxide/pharmacology , Glucose/metabolism
7.
Ecotoxicol Environ Saf ; 256: 114829, 2023 May.
Article in English | MEDLINE | ID: mdl-36989557

ABSTRACT

Heavy metals are ubiquitous environmental pollutants that are extremely dangerous for public health, but the molecular mechanisms of their cytotoxic action are still not fully understood. In the present work, the possible contribution of the mitochondrial ATP-sensitive potassium channel (mK(ATP)), which is usually considered protective for the cell, to hepatotoxicity caused by heavy metals was investigated using polarography and swelling techniques as well as flow cytometry. Using isolated liver mitochondria from adult male Wistar rats and various potassium media containing or not containing penetrating anions (KNO3, KSCN, KAcet, KCl), we studied the effect of mK(ATP) modulators, namely its blockers (5-hydroxydecanoate, glibenclamide, ATP, ADP) and activators (diazoxide, malonate), on respiration and/or membrane permeability in the presence of hepatotoxins such as Cd2+, Hg2+, and Cu2+. It has been shown for the first time that, contrary to Hg2+ and depending on media used, the mK(ATP) modulators affect Cd2+- and/or Cu2+-induced alterations in mitochondrial swelling and respiration rates, although differently, nevertheless, in the ways compatible with mK(ATP) participation in both these cases. On rat AS-30D ascites hepatoma cells, it was found that, unlike Cd2+, an increase in the production of reactive oxygen species was observed with the simultaneous use of Cu2+ and diazoxide; in addition, there was no protective effect of diazoxide against cell death, which also occurred in the presence of Cu2+. In conclusion, the relationships (functional, structural and/or regulatory) between mK(ATP), components of the mitochondrial electron transport chain (CI, CII-CIII and/or ATP synthase, CV) and mitochondrial permeability transition pores were discussed, as well as the role of these molecular structures in the mechanisms of the cytotoxic action of heavy metals.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Mercury , Metals, Heavy , Rats , Male , Animals , Mitochondria, Liver , KATP Channels/metabolism , KATP Channels/pharmacology , Diazoxide/metabolism , Diazoxide/pharmacology , Cadmium/toxicity , Ascites/metabolism , Carcinoma, Hepatocellular/metabolism , Rats, Wistar , Metals, Heavy/metabolism , Mercury/metabolism , Liver Neoplasms/metabolism , Adenosine Triphosphate/metabolism
8.
Biotech Histochem ; 98(3): 210-219, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36740984

ABSTRACT

I investigated the effects of diazoxide, a mitochondrial potassium channel opener, on streptozotocin (STZ) induced pancreatic ß cell damage via the HSP70/HSP90/TLR4/AMPK signaling pathways in vitro. I used the pancreatic ß cell line, 1.1B4, to create four groups: control, STZ treated, diazoxide treated, STZ + diazoxide treated. The STZ treated cells were exposed to 20 µM STZ for 2 h with or without 100 µM diazoxide for 24 h. Total antioxidant status (TAS), total oxidant status (TOS), cell viability and mitochondrial membrane potential (MMP) were measured. Expression of ATP-sensitive potassium channel (KATP) subunits, heat shock protein-70 (HSP70), heat shock protein-90 (HSP90), toll-like receptor 4 (TLR4), AMP-activated protein kinase (AMPK) and some apoptotic proteins were detected using western blotting. Apoptosis was assessed using TUNEL staining. STZ increased TOS and OSI in the pancreatic ß cells; however, diazoxide failed to improve oxidative stress. Also, STZ increased tunnel positive cells in the pancreatic ß cells. Diazoxide decreased the tunnel positive cells in the STZ treated ß cell. STZ decreased MMP; however, diazoxide did not normalize MMP in the STZ induced ß cells. Diazoxide increased the HSP70:HSP90 protein expression ratio. STZ decreased expression of AMPK and subunits of KATP channel and increased the expression of caspase-3 and TLR4 protein; diazoxide normalized the expression of all proteins studied. KATP channel opening by diazoxide protects pancreatic ß cells against STZ toxicity via HSP70/HSP90/TLR4/AMPK signaling.


Subject(s)
Diazoxide , Insulin-Secreting Cells , Diazoxide/pharmacology , Insulin-Secreting Cells/metabolism , Streptozocin/pharmacology , AMP-Activated Protein Kinases/metabolism , AMP-Activated Protein Kinases/pharmacology , Toll-Like Receptor 4/metabolism , Signal Transduction , Adenosine Triphosphate/metabolism , Adenosine Triphosphate/pharmacology , Heat-Shock Proteins/metabolism
9.
Anatol J Cardiol ; 27(2): 88-99, 2023 02.
Article in English | MEDLINE | ID: mdl-36747448

ABSTRACT

BACKGROUND: Myocardial infarction is associated with the autophagy and apoptosis of cardiomyocytes, and the protein kinase B/mammalian target of rapamycin (AKT/mTOR) pathway plays a crucial role in this mechanism. METHODS: Acute myocardial infarction rat models were assessed 0.5, 2, 4, and 6 hours after the induction of the myocardial infarction using hematoxylin and eosin staining, triphenyl tetrazolium chloride staining, myocardial enzyme measurements, and levels of autophagic activity. Additionally, diazoxide, 5-hydroxydecanoate, and LY294002 were intraperitoneally administered to rat models at peak myocardial injury to assess their effects on cardiac injury. The expression levels of autophagy-related and apoptosis-related proteins, as well as p-AKT and p-mTOR, were measured. Electron microscopy was used to assess the ultrastructure and the number of autophagosomes in the cardiac tissue. RESULTS: We demonstrated that the degree of myocardial injury and the level of autophagy were significantly elevated in the experimental cohort compared with the control cohort. In addition, the myocardial infarct size was significantly smaller in diazoxide-treated acute myocardial infarction rats compared with untreated rats. Diazoxide also decreased the levels of myocardial injury markers, autophagy, and apoptosis, while it also induced the levels of AKT and mTOR phosphorylation, decreased the number of autophagosomes, and improved the myocardial ultrastructure of the acute myocardial infarction rats. 5-Hydroxydecanoate treatment resulted in an opposite effect to those observed upon diazoxide treatment. LY294002 was also able to reverse diazoxide treatment effects. CONCLUSION: Peak levels of myocardial tissue injury and autophagy were observed 2 hours post-acute myocardial infarction induction in rats. Diazoxide treatment inhibited myocardial autophagy and apoptosis while protecting cardiac tissue from ischemic injury, which is likely to have proceeded through activation of the AKT/mTOR pathway.


Subject(s)
Myocardial Infarction , Proto-Oncogene Proteins c-akt , Rats , Animals , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction , Diazoxide/pharmacology , Diazoxide/therapeutic use , Diazoxide/metabolism , Rats, Sprague-Dawley , TOR Serine-Threonine Kinases/metabolism , TOR Serine-Threonine Kinases/pharmacology , Myocardial Infarction/drug therapy , Myocytes, Cardiac , Mammals/metabolism
10.
Cardiovasc Drugs Ther ; 37(1): 39-51, 2023 02.
Article in English | MEDLINE | ID: mdl-34595611

ABSTRACT

PURPOSE: Doxorubicin-induced cardiotoxicity (DIC) is a common side effect of doxorubicin chemotherapy, and a major mechanism of DIC is inflammation. However, no effective method exists to prevent DIC. In the present study, we investigated the cardioprotective effects of nicorandil against DIC using multiparametric cardiac magnetic resonance (CMR) imaging and elucidated the anti-inflammatory properties of nicorandil in rat models. METHODS: Male Sprague-Dawley rats received four weekly intraperitoneal doxorubicin doses (4 mg/kg/injection) to establish the DIC model. After treatment with or without nicorandil (3 mg/kg/day) or diazoxide (10 mg/kg/day) orally, all the groups underwent weekly CMR examinations, including cardiac function and strain assessment and T2 mapping, for 6 weeks. Additionally, blood samples and hearts were collected to examine inflammation and histopathology. RESULTS: According to our results, the earliest DIC CMR parameter in the doxorubicin group was T2 mapping time prolongation compared with the DIC rats treated with nicorandil (doxorubicin+nicorandil group) at week 2. Subsequently, the left ventricular ejection fraction (LVEF) and global peak systolic myocardial strain in the doxorubicin group were significantly reduced, and nicorandil effectively inhibited these effects at week 6. Our results were confirmed by histopathological evaluations. Furthermore, nicorandil treatment had a protective effect against the doxorubicin-induced inflammatory response. Interestingly, similar protective results were obtained using the KATP channel opener diazoxide. CONCLUSION: Collectively, our findings indicate that nicorandil application ameliorates DIC in rats with significantly higher cardiac function and myocardial strain and less fibrosis, apoptosis and inflammatory cytokine production. Nicorandil prevents T2 abnormalities in the early stages of DIC, showing a high clinical value for early nicorandil treatment in chemotherapy patients.


Subject(s)
Diazoxide , Nicorandil , Rats , Male , Animals , Nicorandil/pharmacology , Diazoxide/pharmacology , Cardiotoxicity , Stroke Volume , Rats, Sprague-Dawley , Ventricular Function, Left , Doxorubicin/toxicity , Magnetic Resonance Imaging , Inflammation/chemically induced
11.
J Thorac Cardiovasc Surg ; 165(3): e90-e99, 2023 03.
Article in English | MEDLINE | ID: mdl-34763893

ABSTRACT

OBJECTIVES: The mitochondrial adenosine triphosphate-sensitive potassium channel is central to pharmacologically induced tolerance to spinal cord injury. We hypothesized that both direct and nitric oxide-dependent indirect activation of the adenosine triphosphate-sensitive potassium channel contribute to the induction of ischemic metabolic tolerance. METHODS: Spinal cord injury was induced in adult male C57BL/6 mice through 7 minutes of thoracic aortic crossclamping. Pretreatment consisted of intraperitoneal injection 3 consecutive days before injury. Experimental groups were sham (no pretreatment or ischemia, n = 10), spinal cord injury control (pretreatment with normal saline, n = 27), Nicorandil 1.0 mg/kg (direct and indirect adenosine triphosphate-sensitive potassium channel opener, n = 20), Nicorandil 1 mg/kg + carboxy-PTIO 1 mg/kg (nitric oxide scavenger, n = 21), carboxy-PTIO (n = 12), diazoxide 5 mg/kg (selective direct adenosine triphosphate-sensitive potassium channel opener, n = 25), and DZ 5 mg/kg+ carboxy-PTIO 1 mg/kg, carboxy-PTIO (n = 23). Limb motor function was assessed using the Basso Mouse Score (0-9) at 12-hour intervals for 48 hours after ischemia. RESULTS: Motor function was significantly preserved at all time points after ischemia in the Nicorandil pretreatment group compared with ischemic control. The addition of carboxy-PTIO partially attenuated Nicorandil's motor-preserving effect. Motor function in the Nicorandil + carboxy-PTIO group was significantly preserved compared with the spinal cord injury control group (P < .001), but worse than in the Nicorandil group (P = .078). Motor preservation in the diazoxide group was similar to the Nicorandil + carboxy-PTIO group. There was no significant difference between the diazoxide and diazoxide + carboxy-PTIO groups. CONCLUSIONS: Both direct and nitric oxide-dependent indirect activation of the mitochondrial adenosine triphosphate-sensitive potassium channel play an important role in pharmacologically induced motor function preservation.


Subject(s)
Diazoxide , Spinal Cord Injuries , Male , Mice , Animals , Diazoxide/pharmacology , Nicorandil/pharmacology , Adenosine Triphosphate/metabolism , Potassium Channels , Nitric Oxide/metabolism , Mice, Inbred C57BL , Ischemia
12.
J Am Heart Assoc ; 11(23): e026304, 2022 12 06.
Article in English | MEDLINE | ID: mdl-36444837

ABSTRACT

Background ATP-sensitive potassium channels are inhibited by ATP and open during metabolic stress, providing endogenous myocardial protection. Pharmacologic opening of ATP potassium channels with diazoxide preserves myocardial function following prolonged global ischemia, making it an ideal candidate for use during cardiac surgery. We hypothesized that diazoxide would reduce myocardial stunning after regional ischemia with subsequent prolonged global ischemia, similar to the clinical situation of myocardial ischemia at the time of revascularization. Methods and Results Swine underwent left anterior descending occlusion (30 minutes), followed by 120 minutes global ischemia protected with hyperkalemic cardioplegia±diazoxide (N=6 each), every 20 minutes cardioplegia, then 60 minutes reperfusion. Cardiac output, time to wean from cardiopulmonary bypass, left ventricular (LV) function, caspase-3, and infarct size were compared. Six animals in the diazoxide group separated from bypass by 30 minutes, whereas only 4 animals in the cardioplegia group separated. Diazoxide was associated with shorter but not significant time to wean from bypass (17.5 versus 27.0 minutes; P=0.13), higher, but not significant, cardiac output during reperfusion (2.9 versus 1.5 L/min at 30 minutes; P=0.05), and significantly higher left ventricular ejection fraction at 30 minutes (42.5 versus 15.8%; P<0.01). Linear mixed regression modeling demonstrated greater left ventricular developed pressure (P<0.01) and maximum change in ventricular pressure during isovolumetric contraction (P<0.01) in the diazoxide group at 30 minutes of reperfusion. Conclusions Diazoxide reduces myocardial stunning and facilitates separation from cardiopulmonary bypass in a model that mimics the clinical setting of ongoing myocardial ischemia before revascularization. Diazoxide has the potential to reduce myocardial stunning in the clinical setting.


Subject(s)
Myocardial Ischemia , Myocardial Stunning , Swine , Animals , Diazoxide/pharmacology , Myocardial Stunning/etiology , Myocardial Stunning/prevention & control , KATP Channels , Stroke Volume , Ventricular Function, Left , Ischemia , Myocardial Ischemia/complications , Myocardial Ischemia/drug therapy , Adenosine Triphosphate
13.
Brain Inj ; 36(7): 876-885, 2022 06 07.
Article in English | MEDLINE | ID: mdl-35695083

ABSTRACT

BACKGROUND: Hypoxic-ischemic encephalopathy (HIE) is one of the leading causes of neonatal death and permanent neurological disability. Here, we designed to quest therapeutic effects of diazoxide (DZ) on HIE and its mechanism. METHODS: The cell model of HIE was established. CCK8 and flow cytometry were applied to test cell viability and apoptosis. RT-qPCR and western blotting was evaluated to the expression of miR-21, PDCD4, PI3K, and p-AKT/AKT. Commercial kits were employed to detect SOD, MDA, LDH. DCFH-DA was used to measure intracellular ROS. ELISA was performed to estimate IL-1ß, IL-6 and TNF-α. Dual-luciferase reporter gene and RIP assay were applied to confirm the binding relationships between miR-21 and PDCD4. RESULTS: In H19-7 cells and PC12 cells stimulated by OGD, with low cell viability, high apoptosis, miR-21 high expression and PDCD4 low expression. However, the functions were all reversed by DZ administration. Furthermore, miR-21 inhibitor could abolish the beneficial effects of DZ on OGD-induced cells. Besides, miR-21 could interact with PDCD4. In addition, PDCD4 involved with the regulation of DZ to OGD-induced cells via PI3K/AKT pathway. CONCLUSION: DZ enhanced miR-21 level and inhibited PDCD4 level via PI3K/AKT pathway to resisted HIE.


Subject(s)
Hypoxia-Ischemia, Brain , MicroRNAs , Animals , Apoptosis , Apoptosis Regulatory Proteins/genetics , Apoptosis Regulatory Proteins/metabolism , Diazoxide/pharmacology , Diazoxide/therapeutic use , Humans , Hypoxia-Ischemia, Brain/drug therapy , Infant, Newborn , Ischemia , MicroRNAs/genetics , MicroRNAs/metabolism , Neuroprotection , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism , Phosphatidylinositol 3-Kinases/pharmacology , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-akt/pharmacology , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Rats
14.
Gynecol Endocrinol ; 38(6): 528-530, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35403531

ABSTRACT

Safety information on diazoxide for pregnant and lactating women with hypoglycemia is limited. In this case report, we assessed diazoxide concentrations in maternal and infant blood, cord blood, and breast milk. We described a 30-year-old pregnant woman diagnosed with hypoglycemia due to nesidioblastosis at 4 months of age. Before becoming pregnant, she was treated with oral diazoxide (75-375 mg). All medications were discontinued after she was discovered to be pregnant. During gestational week 25, diazoxide treatment was resumed at 150-175 mg daily for repeated hypoglycemic episodes. Diazoxide administration was continued in combination with diet treatment until delivery. Glucose levels were well controlled. During gestational week 40, a male infant weighing 3069 g was delivered via spontaneous vaginal delivery with no pregnancy or neonatal complications. Diazoxide concentrations detected in maternal serum at 2.5-11.6 h after oral treatment ranged from 12.4 to 32.7 µg/mL. In cord blood, the diazoxide concentration was 18.5 µg/mL at 7.2 h after the last dose. During lactation, no hypoglycemia or hyperglycemia was observed. The approximate calculated ratio of diazoxide in breast milk and maternal serum was 0.09. The calculated daily infant dose was 0.47 mg/kg/day. The relative infant dose via breast milk ranged from 3.1% to 5.9%. Diazoxide transferred from maternal blood to the fetus across the placenta. It also transferred into breast milk, but there were no harmful effects on the infant.


Subject(s)
Hypoglycemia , Milk, Human , Adult , Diazoxide/pharmacology , Diazoxide/therapeutic use , Female , Fetal Blood , Humans , Infant , Infant, Newborn , Lactation , Male , Pregnancy
15.
Am J Respir Cell Mol Biol ; 66(5): 539-554, 2022 05.
Article in English | MEDLINE | ID: mdl-35175177

ABSTRACT

Mutations in ABCC8 have been identified in pulmonary arterial hypertension (PAH). ABCC8 encodes SUR1, a regulatory subunit of the ATP-sensitive potassium channel Kir6.2. However, the pathophysiological role of the SUR1/Kir6.2 channel in PAH is unknown. We hypothesized that activation of SUR1 could be a novel potential target for PAH. We analyzed the expression of SUR1/Kir6.2 in the lungs and pulmonary artery (PA) in human PAH or experimental pulmonary hypertension (PH). The contribution of SUR1 in human or rat PA tone was evaluated, and we measured the consequences of in vivo activation of SUR1 in control and PH rats. SUR1 and Kir6.2 protein expression was not reduced in the lungs or human pulmonary arterial endothelial cells and smooth muscle cells from PAH or experimentally induced PH. We showed that pharmacological activation of SUR1 by three different SUR1 activators (diazoxide, VU0071063, and NN414) leads to PA relaxation. Conversely, the inhibition of SUR1/Kir6.2 channels causes PA constriction. In vivo, long- and short-term activation of SUR1 with diazoxide reversed monocrotaline-induced PH in rats. In addition, in vivo diazoxide application (short protocol) reduced the severity of PH in chronic-hypoxia rats. Moreover, 3 weeks of diazoxide exposure in control rats had no cardiovascular effects. Finally, in vivo, activation of SUR1 with NN414 reduced monocrotaline-induced PH in rats. In PAH and experimental PH, the expression of SUR1/Kir6.2 was still present. In vivo pharmacological SUR1 activation by two different molecules alleviated experimental PH, providing proof of concept that SUR1 activation should be considered for PAH and evaluated more thoroughly.


Subject(s)
Diazoxide , Pulmonary Arterial Hypertension , Animals , Diazoxide/pharmacology , Endothelial Cells , Familial Primary Pulmonary Hypertension , Monocrotaline , Pulmonary Arterial Hypertension/drug therapy , Rats
16.
J Thorac Cardiovasc Surg ; 163(6): e385-e400, 2022 06.
Article in English | MEDLINE | ID: mdl-32977969

ABSTRACT

OBJECTIVE: Adenosine triphosphate potassium sensitive channels provide endogenous myocardial protection via coupling of cell membrane potential to myocardial metabolism. Adenosine triphosphate potassium sensitive channel openers, such as diazoxide, mimic ischemic preconditioning, prevent cardiomyocyte swelling, preserve myocyte contractility after stress, and provide diastolic protection. We hypothesize that diazoxide combined with hyperkalemic cardioplegia provides superior myocardial protection compared with cardioplegia alone during prolonged global ischemia in a large animal model. METHODS: Twelve pigs were randomized to global ischemia for 2 hours with a single dose of cold blood (4:1) hyperkalemic cardioplegia alone (n = 6) or with diazoxide (500 µmol/L) (n = 6) and reperfused for 1 hour. Cardiac output, myocardial oxygen consumption, left ventricular developed pressure, left ventricular ejection fraction, diastolic function, myocardial troponin, myoglobin, markers of apoptosis, and left ventricular infarct size were compared. RESULTS: Four pigs in the cardioplegia alone group could not be weaned from cardiopulmonary bypass. There were no differences in myoglobin, troponin, or apoptosis between groups. Diazoxide preserved cardiac output versus control (74.5 vs 18.4 mL/kg/min, P = .01). Linear mixed regression modeling demonstrated that the addition of diazoxide to cardioplegia preserved left ventricular developed pressure by 36% (95% confidence interval, 9.9-61.5; P < .01), dP/dt max by 41% (95% confidence interval, 14.5-67.5; P < .01), and dP/dt min by 33% (95% confidence interval, 8.9-57.5; P = .01). It was also associated with higher (but not significant) myocardial oxygen consumption (3.7 vs 1.4 mL O2/min, P = .12). CONCLUSIONS: Diazoxide preserves systolic and diastolic ventricular function in a large animal model of prolonged global myocardial ischemia. Diazoxide as an adjunct to hyperkalemic cardioplegia may allow safer prolonged ischemic times during increasingly complicated cardiac procedures.


Subject(s)
Diazoxide , Myocardial Ischemia , Animals , Adenosine Triphosphate/metabolism , Cardioplegic Solutions/pharmacology , Diazoxide/pharmacology , Heart Arrest, Induced/adverse effects , Heart Arrest, Induced/methods , Ischemia , Myoglobin/metabolism , Potassium/metabolism , Potassium Channels/metabolism , Stroke Volume , Swine , Troponin , Ventricular Function, Left
17.
Int J Mol Sci ; 22(21)2021 Oct 27.
Article in English | MEDLINE | ID: mdl-34769027

ABSTRACT

Hypoxia is the leading cause of death in cardiomyocytes. Cells respond to oxygen deprivation by activating cytoprotective programs, such as mitochondrial connexin43 (mCx43) overexpression and the opening of mitochondrial KATP channels, aimed to reduce mitochondrial dysfunction. In this study we used an in vitro model of CoCl2-induced hypoxia to demonstrate that mCx43 and KATP channels cooperate to induce cytoprotection. CoCl2 administration induces apoptosis in H9c2 cells by increasing mitochondrial ROS production, intracellular and mitochondrial calcium overload and by inducing mitochondrial membrane depolarization. Diazoxide, an opener of KATP channels, reduces all these deleterious effects of CoCl2 only in the presence of mCx43. In fact, our results demonstrate that in the presence of radicicol, an inhibitor of Cx43 translocation to mitochondria, the cytoprotective effects of diazoxide disappear. In conclusion, these data confirm that there exists a close functional link between mCx43 and KATP channels.


Subject(s)
Connexin 43/metabolism , Cytoprotection/drug effects , Diazoxide/pharmacology , Hypoxia/metabolism , Mitochondria, Heart/drug effects , Mitochondria, Heart/metabolism , Animals , Apoptosis/drug effects , Cell Line , Cell Survival/drug effects , Cobalt/pharmacology , Membrane Potential, Mitochondrial/drug effects , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Potassium Channels/metabolism , Rats , Reactive Oxygen Species/metabolism
18.
Ann Clin Transl Neurol ; 8(11): 2205-2209, 2021 11.
Article in English | MEDLINE | ID: mdl-34612610

ABSTRACT

Glut1 deficiency syndrome is caused by SLC2A1 mutations on chromosome 1p34.2 that impairs glucose transport across the blood-brain barrier resulting in hypoglycorrhachia and decreased fuel for brain metabolism. Neuroglycopenia causes a drug-resistant metabolic epilepsy due to energy deficiency. Standard treatment for Glut1 deficiency syndrome is the ketogenic diet that decreases the demand for brain glucose by supplying ketones as alternative fuel. Treatment options are limited if patients fail the ketogenic diet. We present a case of successful diazoxide use with continuous glucose monitoring in a patient with Glut1 deficiency syndrome who did not respond to the ketogenic diet.


Subject(s)
Blood Glucose Self-Monitoring , Carbohydrate Metabolism, Inborn Errors/diagnosis , Carbohydrate Metabolism, Inborn Errors/drug therapy , Diazoxide/pharmacology , Membrane Transport Modulators/pharmacology , Monosaccharide Transport Proteins/deficiency , Seizures/drug therapy , Adolescent , Carbohydrate Metabolism, Inborn Errors/blood , Diazoxide/administration & dosage , Female , Humans , Monosaccharide Transport Proteins/blood , Seizures/etiology
19.
J Endocrinol ; 250(3): 105-116, 2021 07 12.
Article in English | MEDLINE | ID: mdl-34156345

ABSTRACT

The well-balanced secretion between insulin and growth hormone (GH) is essential in regulating substrate metabolism, energy metabolism, and body composition. High insulin and low GH levels are often observed in obesity, contributing to reduced energy expenditure and further fat accumulation. Although suppression of hyperinsulinemia is proposed as a treatment for obesity, changes in GH secretion and energy metabolism following this treatment are not thoroughly studied. This leaves unexplained observations, such as unchanged lean mass following insulin reduction. In this study, high-fat diet-induced obese (DIO) and normal chow-fed lean mice on a C57BL/6J background were treated for 7 weeks with diazoxide (1250 mg/kg in food), a KATP channel opener that suppressed insulin secretion. Diazoxide treatment for 10 days was sufficient to increase pulsatile GH secretion in DIO mice before any significant body weight change. The restored insulin-GH balance in DIO mice was followed by improvement in substrate and energy metabolism in a prolonged treatment period (4-6 weeks), including reduced fat mass, increased lipid oxidation and energy expenditure, as well as improved insulin sensitivity and metabolic flexibility. These metabolic benefits occurred along with the changes in the expression level of genes regulated by the insulin-GH balance. When applying diazoxide to normal chow-fed normoinsulinemic lean mice, none of the above metabolic effects was observed, suggesting that the metabolic changes following diazoxide treatment were mediated through the suppression of hyperinsulinemia. These results suggest that suppression of hyperinsulinemia by diazoxide restores GH secretion and improves substrate and energy metabolism in DIO mice.


Subject(s)
Diazoxide/therapeutic use , Growth Hormone/metabolism , Hyperinsulinism/prevention & control , Obesity/metabolism , Animals , Body Composition/drug effects , Diazoxide/pharmacology , Diet, High-Fat , Energy Metabolism/drug effects , Hyperinsulinism/complications , Hyperinsulinism/metabolism , Insulin/metabolism , Insulin Resistance/physiology , Insulin Secretion/drug effects , Lipid Metabolism/drug effects , Male , Mice , Mice, Inbred C57BL , Mice, Obese , Obesity/complications , Obesity/drug therapy
20.
J Pharmacol Exp Ther ; 376(1): 40-50, 2021 01.
Article in English | MEDLINE | ID: mdl-33100270

ABSTRACT

Pharmacological openers of ATP-sensitive potassium (KATP) channels are effective antihypertensive agents, but off-target effects, including severe peripheral edema, limit their clinical usefulness. It is presumed that the arterial dilation induced by KATP channel openers (KCOs) increases capillary pressure to promote filtration edema. However, KATP channels also are expressed by lymphatic muscle cells (LMCs), raising the possibility that KCOs also attenuate lymph flow to increase interstitial fluid. The present study explored the effect of KCOs on lymphatic contractile function and lymph flow. In isolated rat mesenteric lymph vessels (LVs), the prototypic KATP channel opener cromakalim (0.01-3 µmol/l) progressively inhibited rhythmic contractions and calculated intraluminal flow. Minoxidil sulfate and diazoxide (0.01-100 µmol/l) had similar effects at clinically relevant plasma concentrations. High-speed in vivo imaging of the rat mesenteric lymphatic circulation revealed that superfusion of LVs with cromakalim and minoxidil sulfate (0.01-10 µmol/l) maximally decreased lymph flow in vivo by 38.4% and 27.4%, respectively. Real-time polymerase chain reaction and flow cytometry identified the abundant KATP channel subunits in LMCs as the pore-forming Kir6.1/6.2 and regulatory sulfonylurea receptor 2 subunits. Patch-clamp studies detected cromakalim-elicited unitary K+ currents in cell-attached patches of LMCs with a single-channel conductance of 46.4 pS, which is a property consistent with Kir6.1/6.2 tetrameric channels. Addition of minoxidil sulfate and diazoxide elicited unitary currents of similar amplitude. Collectively, our findings indicate that KCOs attenuate lymph flow at clinically relevant plasma concentrations as a potential contributing mechanism to peripheral edema. SIGNIFICANCE STATEMENT: ATP-sensitive potassium (KATP) channel openers (KCOs) are potent antihypertensive medications, but off-target effects, including severe peripheral edema, limit their clinical use. Here, we demonstrate that KCOs impair the rhythmic contractions of lymph vessels and attenuate lymph flow, which may promote edema formation. Our finding that the KATP channels in lymphatic muscle cells may be unique from their counterparts in arterial muscle implies that designing arterial-selective KCOs may avoid activation of lymphatic KATP channels and peripheral edema.


Subject(s)
Edema/etiology , KATP Channels/metabolism , Lymphatic Vessels/physiology , Muscle Contraction , Action Potentials , Animals , Cells, Cultured , Cromakalim/pharmacology , Diazoxide/pharmacology , KATP Channels/agonists , KATP Channels/genetics , Lymphatic Vessels/drug effects , Lymphatic Vessels/metabolism , Male , Minoxidil/analogs & derivatives , Minoxidil/pharmacology , Myocytes, Smooth Muscle/drug effects , Myocytes, Smooth Muscle/physiology , Potassium/metabolism , Rats , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL
...